224,380 research outputs found

    A finite-strain hyperviscoplastic model and undrained triaxial tests of peat

    Full text link
    This paper presents a finite-strain hyperviscoplastic constitutive model within a thermodynamically consistent framework for peat which was categorised as a material with both rate-dependent and thermodynamic equilibrium hysteresis based on the data reported in the literature. The model was implemented numerically using implicit time integration and verified against analytical solutions under simplified conditions. Experimental studies on the undrained relaxation and loading-unloading-reloading behaviour of an undisturbed fibrous peat were carried out to define the thermodynamic equilibrium state during deviatoric loading as a prerequisite for further modelling, to fit particularly those model parameters related to solid matrix properties, and to validate the proposed model under undrained conditions. This validation performed by comparison to experimental results showed that the hyperviscoplastic model could simulate undrained triaxial compression tests carried out at five different strain rates with loading/unloading relaxation steps.Comment: 30 pages, 16 figures, 4 tables. This is a pre-peer reviewed version of manuscript submitted to the International Journal of Numerical and Analytical Methods in Geomechanic

    Learning to Reconstruct Shapes from Unseen Classes

    Full text link
    From a single image, humans are able to perceive the full 3D shape of an object by exploiting learned shape priors from everyday life. Contemporary single-image 3D reconstruction algorithms aim to solve this task in a similar fashion, but often end up with priors that are highly biased by training classes. Here we present an algorithm, Generalizable Reconstruction (GenRe), designed to capture more generic, class-agnostic shape priors. We achieve this with an inference network and training procedure that combine 2.5D representations of visible surfaces (depth and silhouette), spherical shape representations of both visible and non-visible surfaces, and 3D voxel-based representations, in a principled manner that exploits the causal structure of how 3D shapes give rise to 2D images. Experiments demonstrate that GenRe performs well on single-view shape reconstruction, and generalizes to diverse novel objects from categories not seen during training.Comment: NeurIPS 2018 (Oral). The first two authors contributed equally to this paper. Project page: http://genre.csail.mit.edu

    Pix3D: Dataset and Methods for Single-Image 3D Shape Modeling

    Full text link
    We study 3D shape modeling from a single image and make contributions to it in three aspects. First, we present Pix3D, a large-scale benchmark of diverse image-shape pairs with pixel-level 2D-3D alignment. Pix3D has wide applications in shape-related tasks including reconstruction, retrieval, viewpoint estimation, etc. Building such a large-scale dataset, however, is highly challenging; existing datasets either contain only synthetic data, or lack precise alignment between 2D images and 3D shapes, or only have a small number of images. Second, we calibrate the evaluation criteria for 3D shape reconstruction through behavioral studies, and use them to objectively and systematically benchmark cutting-edge reconstruction algorithms on Pix3D. Third, we design a novel model that simultaneously performs 3D reconstruction and pose estimation; our multi-task learning approach achieves state-of-the-art performance on both tasks.Comment: CVPR 2018. The first two authors contributed equally to this work. Project page: http://pix3d.csail.mit.ed

    Design of magnetic traps for neutral atoms with vortices in type-II superconducting micro-structures

    Full text link
    We design magnetic traps for atoms based on the average magnetic field of vortices induced in a type-II superconducting thin film. This magnetic field is the critical ingredient of the demonstrated vortex-based atom traps, which operate without transport current. We use Bean's critical-state method to model the vortex field through mesoscopic supercurrents induced in the thin strip. The resulting inhomogeneous magnetic fields are studied in detail and compared to those generated by multiple normally-conducting wires with transport currents. Various vortex patterns can be obtained by programming different loading-field and transport current sequences. These variable magnetic fields are employed to make versatile trapping potentials.Comment: 11 pages, 14 figure
    corecore